Collagen triple helix repeat containing-1 negatively regulated by microRNA-30c promotes cell proliferation and metastasis and indicates poor prognosis in breast cancer
نویسندگان
چکیده
BACKGROUND Collagen triple helix repeat containing-1 (CTHRC1), which was firstly identified overexpressed in the adventitia and neointima of injured rat arteries, could inhibit collagen expression and increase cell migration. It was then found to be ubiquitously expressed in numerous cell types such as fibroblasts and smooth muscle cells, and aberrantly up-regulated in several malignant tumors. However, the functional role of CTHRC1 and its related mechanism in breast cancer still remains unclear. METHODS CTHRC1 expressions in breast cancer tissues and cells were assessed by qRT-PCR, western blot and immunohistochemistry. The relative expression level of miR-134, miR-155, miR-30c and miR-630 in breast cancer cells respectively was detected by qRT-PCR. Wild type (Wt) and Mutant type (Mut) CTHRC1 3'UTR sequences were cloned into a psi-CHECK2 reporter vector, and the relative luciferase activity was detected by dual-luciferase reporter assay in indicated cells. The effect of ectopic expression of miR-30c or gain and loss of CTHRC1 on cell viability, cell proliferation, cell cycle progression and apoptosis, cell invasion and migration was respectively detected by CCK-8 assay, colony formation assay, flow cytometry analysis, transwell invasion/migration assay. Protein levels of β-catenin, active β-catenin, normal and phosphorylated form of GSK-3β were detected by western blot in indicated cells. Immunofluorescence staining of β-catenin was performed to observe nuclear localization. RESULTS We found CTHRC1 was frequently up-regulated in human breast cancer cells and tissues. Then our cohort study and further meta-analysis validated high expression of CTHRC1 was associated with aggressive clinicopathological features and poor clinical outcome of breast cancer patients. In addition, CTHRC1 promoted cell proliferation, invasion and migration and suppressed cell apoptosis in breast cancer, which might be by activating GSK-3β/β-catenin signaling and inhibiting Bax/Caspase-9/Caspase-3 signaling respectively; and these biological functions of CTHRC1 could be directly negatively regulated by miR-30c. CONCLUSION Taken together, we identified the role of miR-30c/CTHRC1 axis in breast cancer progression and demonstrated CTHRC1 may serve as a prognostic biomarker and therapeutic target for breast cancer.
منابع مشابه
Overexpression of Collagen Triple Helix Repeat Containing 1 (CTHRC1) is associated with tumour aggressiveness and poor prognosis in human non-small cell lung cancer
Collagen triple helix repeat-containing 1 (CTHRC1), a novel oncogene, was identified to be aberrantly overexpressed in several malignant tumors. However, the expression profile of CTHRC1 and its clinical significance in non-small cell lung cancer (NSCLC) remain unknown. In this study, we showed that CTHRC1 was evidently overexpressed in human NSCLC tissues and NSCLC cell lines at the protein an...
متن کاملCollagen triple helix repeat containing-1 promotes pancreatic cancer progression by regulating migration and adhesion of tumor cells.
Collagen triple helix repeat containing-1 (CTHRC1) is a secreted protein involved in vascular remodeling, bone formation and developmental morphogenesis. CTHRC1 has recently been shown to be expressed in human cancers such as breast cancer and melanoma. In this study, we show that CTHRC1 is highly expressed in human pancreatic cancer tissues and plays a role in the progression and metastasis of...
متن کاملE6/E7-P53-POU2F1-CTHRC1 axis promotes cervical cancer metastasis and activates Wnt/PCP pathway
Cervical cancer is an infectious cancer and the most common gynecologic cancer worldwide. E6/E7, the early genes of the high-risk mucosal human papillomavirus type, play key roles in the carcinogenic process of cervical cancer. However, little was known about its roles in modulating tumor microenvironment, particular extracellular matrix (ECM). In this study, we found that E6/E7 could regulate ...
متن کاملPolysaccharide from Sepia esculenta ink and cisplatin inhibit synergistically proliferation and metastasis of triple-negative breast cancer MDA-MB-231 cells
Objective(s): This paper aims to investigate synergistic inhibition of polysaccharide from Sepia esculenta ink (SIP), a newly isolated marine polysaccharide in our laboratory, on breast cancer MDA-MB-231 cells exposed to cisplatin. Materials and Methods: Cell viability of MDA-MB-231 cells was determined by CCK 8 assay. Median-effect concentration was analyzed using Chou-Talalay method that was ...
متن کاملLoss of RAB1B promotes triple-negative breast cancer metastasis by activating TGF-β/SMAD signaling
Triple-negative breast cancer (TNBC) is a highly aggressive tumor subtype associated with a poor prognosis. The mechanism involved in TNBC progression remains largely unknown. To date, there are no effective therapeutic targets for this tumor subtype. In this study, by performing quantitative proteomic analyses in highly metastatic and parental breast cancer cell line, we found that RAB1B, a me...
متن کامل